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ABSTRACT 

Entities and their relationships for various fields of specialization can 

be described by ontologies. For example, the classes, relationships, and 

methods for designing a virus may be put into a Protégé ontology. If that 

design is to be integrated with a missile design, it will require a standard 

way of sharing and cross-referencing both classes and objects of the 

ontologies. This should be done in a secure way which only allows access to 

specified researchers using specified classes, relations, methods, and 

documentation. In this paper, we introduce a framework for ontology 

sharing that enables ontologies to easily be deployed on the web. Kernel0 is 

the ontology of classes, relations, attributes, and objects. It describes its own 

typing constraints and meta-data in the same way as data. Objects can have 

relationships to objects of other ontologies. Kernel-1 authorization 

definitions in our framework are able to dynamically determine the 

permissions of each user or group for queried objects. Our authorization has 

the ability to perform inferences via IS-A inheritance and by evaluating 

implicit relations and operator definitions. All modifications of values in the 

knowledge base are checked for both appropriate authorization and 

satisfaction of all typing constraints. 
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1. INTRODUCTION 

The Semantic Web usually uses triples to represent entities and ideas. 

These triples represent relationships among classes (e.g. “subclass” 

relationships), the user-defined attributes and relationships of both data and 

metadata, and the “extent” relationship from a class to its objects. The 

inheritance of data-type constraints into subclasses and sub-relations is built 

into Kernel0 of the ontology. 

Researchers in computer science have proposed some knowledge 

representations (KR) such as RDF, RDF Schema, and OWL
1, 2

. Before these, 

there were data models such as the entity-relationship model (E-R Model), 

which diagrams the relationships between entities. In recent years, 

ontologies
3
, have been used to describe the organization of KR data, which 

are usually composed of individuals, concepts, and roles (also known as 

objects, classes, and relations). An implementation of an ontology is a data 

model of basic metadata of KR. More and more extended knowledge bases 

can cooperate as long as a proper basic ontology such as Kernel0 is defined 

and shared among them. 

The Semantic Web
4
, developed by Sir Timothy Berners-Lee, 

introduced the concept that knowledge could be more efficiently used if 

machines were applied to a web of data that used a consistent set of resource 

pointers. With ontologies related to many domains and knowledge bases, 

inter-referencing of information can form a Semantic Web where both man 

and machines can reference and apply knowledge from each other. This 

paper proposes a framework to organize the sharing web of ontologies for 

the Semantic Web. We adopt a flexible three-tier architecture that is an 

extension of a client /server architecture. 

In our three-tier architecture, clients can be applications, web GUIs, or 

mobile applications that communicate with a middle API. The middle layer, 

the essential part of the server, is responsible for user login, query parsing, 

proxy queries, distributed queries, merging results, and authorization 

computations. Current ontology sharing often does not perform 

authorization checks; as indicated above, however, the knowledge in an 

ontology is often the heart of an organization’s assets. Data as well as data 

typing must be hidden. 

A hidden backend maintains consistency of the data model. It is also in 

charge of translating data model queries into operations on persistent 

storage. Depending on the configuration, it stores data in various databases, 

in a file system, or even in cloud storage such as Hadoop. The upper 

ontology Kernel0 is based on a common data model, class algebra
5, 6

, and it 

allows objects to cross-reference each other via relations on the Web. A 
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related query language
6
 helps to query data in the ontology on the web via 

proxy queries. Furthermore, the data model contains implicit relations for 

which the objects in the range are dynamically calculated. This feature 

provides inference ability for authorization relationships. The implicit 

descriptions only specify the semantics of permissions instead of 

enumerating them. Permissions of requesters on requested objects are 

dynamically computed according to Kernel1. 

Section 2 outlines the communication among client users, an 

authentication center (AC), and an ontology server as well as the 

communication between servers to cross-query the ontologies. The protocol 

for login to the middle server is described in Section 3 as well as the role of 

the middle server in authorizing inferences. Queries between servers must 

be constrained using proxies to secure authentication and authorization of 

users. The hidden backend’s responsibilities are described in Section 4, and 

the authorization inference mechanism is described in Section 5. 

2. KNOWLEDGE SHARING ARCHITECTURE 

There is already much metadata on the Web about information 

exchange. Since the beginnings of the Semantic Web, XML’s universal 

resource indicators have been used to act like one-way pointers. Instead, we 

use Web-based 2-way relationships between objects and classes.  An 

ontology of classes and relations is a very useful way for machines and 

humans to read structured data. However, for convenience, ontology sharing 

is now usually public rather than secure. There is, however, the need for 

authorization in some situations. This paper presents a way of sharing 

ontologies with authorization control and distributed queries. Our 

architecture of ontology sharing is presented in Figure 1. The authentication 

center (AC) is a service that is trusted by all servers, providing verification 

of users and server identities. Typically, ontology servers are fully public, in 

which case all ontology information can be queried by anyone. In this paper, 

however, we consider the case where servers and their ontologies are 

protected by given policies. 
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Figure 1. Three-tier architecture 

Figure 1 presents the communication for ontology sharing. Objects, 

classes, and relations in an ontology can be distributed on the Web. This 

architecture allows the domain and the range of a relation to go across the 

Web, that is, between two different ontologies. For security reasons, we use 

a proxy design based on stateful verification, supported by an authentication 

center. During a query, there may be some objects to be referenced from 

different ontologies. In this case, the objects in the domain of a relation can 

be located at a different ontology from the range. When a query needing a 

proxy is sent from user C, a designated server M first invokes a proxy login 

to the server (denoted by P) which will be queried. Then, P asks the AC 

whether the key K from M is verified for proxy purposes. P grants M access 

as C's agent for a proxy connection if the check is passed. Again, P is a 

server just like M, so it can set itself as a fully public server. Then the proxy 

check is not necessary. Every server actually has two login services: one for 

users and another for proxies. If a proxy login is not allowed, then ontology 

sharing cannot be used. After login of a user or a proxy, queries still involve 

controlled authorization. The authorization inference is described in Section 

5. Furthermore, there is a hidden backend for every server. It takes 

responsibility for model translation and data storage. Section 4 describes the 

backend work in detail. 
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3. THE MIDDLE LAYER 

Relative to the simple data persistency provided by the hidden backend, 

the main part of a Cadabia server is the middle layer, which is in charge of 

interactions with clients. It handles client logins, queries, and proxy queries 

to other servers as well as proxy logins from other servers. Objects in other 

ontologies that are cross-referenced by a relation of a query are accessed 

during proxy querying. The information of distributed objects is processed 

by the middle layer, which collects those objects into the result of the proxy 

query. Authorization, in addition, is applied to control the access rights of 

client users. The middle layer therefore maintains its own Kernel1 security 

ontology to protect itself and its ability to edit access rights and capabilities 

of users and their groups. 

3.1 Middle Model 

The User API and Proxy API define client login and proxy login, 

respectively. For a server to be a proxy login, the server must login as a 

client to another server. The access of clients applying for the proxy API is 

highly restricted for security reasons. Other than the definition of inverse 

relationships, modifications to data are expected to be made by users who 

directly login to a server, not via a proxy server. That is, clients who use the 

User API to login are granted more permission for update operations. A 

third way of logging in to the top layer in Figure 2 is to apply a Web service. 

A Web service login can be set up by using HTTPS connections to the AC. 

Many technologies, like AJAX, JFS, GWT, can achieve this implementation. 

However, a Web service which supports stateful verification by te AC is 

recommended if browser-only apps use OpenID
7
, for example. All of these 

APIs provide querying of ontologies extended from Kernel0, as described in 

Section 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Components of the middle layer 
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The Kernel1 layer definitions involve authentication and service 

lookup by AC. The query parser and distribution and merge (D&M) 

components process queries from clients. The former deals with a query 

request by a client, parsing it into multiple stages. Each stage traverses a 

relation and possibly performs selections. Proxy queries are invoked if 

objects are distributed on other ontologies, and a merge process collects 

objects in the result. Whether local objects or distributed objects are used, 

authorization is applied while accessing data on a designated server or proxy 

server. Authorization above the data connector layer computes access to 

objects from definitions in the ontology. The data connector process 

connects to the hidden backend for real data of the ontology. This design not 

only protects the backend from outside hacks but also allows the backend 

data to be virtually distributed in a cloud. 

3.2 Authorization 

Our model takes advantage of the ontology to perform authorization 

inferences in order to determine the access rights of clients. This 

authorization component reads the relevant data described in Kernel1 (see 

Section 5)and calculates the permission of objects which the client intends 

to access. The result is dynamically calculated from groups
8
, which can be 

set either explicitly or implicitly. Explicit set assignments enumerate the 

permissions, while implicit sets contain implicit rules for dynamically 

computing user authorizations based on the current user and the object 

properties. Details of authorization inference are described in Section 5. 

4. THE HIDDEN BACKEND 

On the server side, the backend plays the part of a bridge to translate 

the data model of an ontology into persistent storage. Both SQL and 

non-SQL backends have an identical API for the middle layer, so it does not 

have to be concerned with what kind of persistent storage is actually used. 

This enables persistent storage heterogeneity, and Kernel0-based ontologies 

behave like a federated database system
9
. Data of the ontology may be 

stored in a database or other persistent storage such as a file system. Having 

the backend hidden from outside servers protects it from attacks, so the data 

would be hard destroy from the outside. We suggest using a private 

connection between the middle and backend for advanced protection. 

4.1 Data Model API and Translation 

To enable cross-referencing of objects among ontologies on the Web, a 

data model called Class Algebra
6
 is adopted for the ontology. It uses a 

human-readable Object Identifier (Oid) consisting of a service URL, an 

ontology name, a class name, and an object name of the form 
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“URL:ontology@Class[object]”. Backend servers have a different API from 

the middle API. The data model API is based on the model of Class Algebra 

to control data. Classes, attributes, and relations in Class Algebra are all 

treated as definition objects, and class definitions contain specified relations 

for inheritance. Another component, the query translator, of the data model 

API processes the request and performs operations on data with regard to 

target persistent storage. With specified target storage, data are 

added/deleted/modified in the corresponding storage. Data model operations 

can be translated into relevant queries of database schema if a database is 

chosen as persistent storage. Proper database connectors (DBC) help to store 

data in a related database, while a data process module (DPM) is used to 

access files in a file system. 

 

 

 

 

 

 

 

 

Figure 3. Components of the hidden backend 

4.2 Persistent Storage 

Due to the private connection between the middle and backend, there is 

no risk of session attacks on the backend. There will be many operations 

from access requests via the API to maintain consistency of objects and 

relationships among them, including inheritance of classes. The components 

at the bottom layer of the backend are database management system (DBMS) 

and file systems (FS), including network file systems (NFS) and Distributed 

File Systems (DFS). DBMS management of data in the database is 

connected by the DBC component. It can connect to a SQL DB, an XML 

DB, etc. DBC provides a bridge to access a specified DB, and the query 

translator uses it to access the data model as well. DPM, moreover, provides 

an approach to directly operate on data in an FS/NFS. This is because some 

large objects are not suitable for storage in a DB. They can be more 

efficiently stored in a file system, for example, by reading partial pieces of a 

file. On the other hand, there can be some persistent storage preserving data 

in a specified file format such as JSON or XML. The last module, DFS, 
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takes charge of distributing data on the Internet. It even can support cloud 

storage (Apache Hadoop
10

, for instance). By implementing such a data 

distribution module, the backend can execute much more efficiently and 

stably by using the distribution and replication. 

5. AUTHORIZATION 

5.1 Upper Ontology 

Kenel0 is built according to the Class Algebra
5,6

 knowledge 

representation. Kernel0 is an upper ontology for metadata in which 

ClassDefn, AttributeDefn, and RelationDefn are three essential classes. All 

classes (also known as concepts) are defined in a ClassDefn, including 

"ClassDefn" itself. It describes basic attributes and relations of classes, such 

as isAbstract, isFinal, hasAttibutes, subclassOf, etc. Relations and attributes 

are defined in the extents of the RelationDefn and AttributeDefn classes.  

Figure 4. Kernel0 

"Thing" is the unique root class of the ontology. The other class, 

"CDBObject", directly inherits from Thing and plays the role of a basic 

OBJECT concept for extending an upper ontology such as SUMO. All other 

classes have to be successors of CDBObject to be considered well-defined 

in terms of the Cadabia Kernel0. Inheritance of constraints is implemented 

for subclassOf, and inheritance of objects in extents is implemented for 

superclassOf relations. Several other classes are included in Kernel0. 
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AttributeType is used to define types of attributes, so all attribute types are 

of type PrimitiveType, which inherits from AttributeType, which defines 

common primitive types of attributes. A Collection class is an abstract 

representation for collections with properties such as isOrdered, count, and 

hasMembers. The Kernel0 upper ontology is outlined in Figure 4. It 

describes the most primitive ontology for sharing and extending data 

definitions. 

5.2 Authorization Inference 

The authorization capability is described in Kernel1. It is a variation of 

Role-Based Access Control (RBAC
11

) combined withKernel0. There are 

classes of Kernel1 related to authority, including User, AbstractGroup, 

UserGroup, ImplicitGroup, ExplicitGroup, BannedGroup and Permission
8
, 

appended to Kernel0 classes; the CDBObject adds authorities and owner 

relations. Figure 5 shows the relations among these classes, and Figure 6 

shows the whole view of Kernel1. An ExplicitGroup (EG) and 

ImplicitGroup (IG) define individual users either via an explicit relation or 

an implicitly computed formula, respectively, while BannedGroup (BG) 

defines those who are banned. The relationship between permissions and 

applying objects is defined in five kinds of fundamental permissions 

inherited from CDBObject. They are CreatePermission, ReadPermission, 

UpdatePermission, DeletePermission and ExecutePermission. Instances of 

Permission tell which objects apply what permissions defined in EG, IG, or 

BG. AbstractGroup is an abstract class representing the GROUP concept. 

Such relations of inheritance avoid nesting the references of BG as well. 

That is, the banned objects will never include any object of BG. Thus, we do 

not allow multiply negatedBG relations. 

 

Figure 5. Authority partition of Kernel-1 
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Each instance of EG explicitly defines a group of users, while each 

instance of IG defines a group of users implicitly, which is filtered by a 

query constraint. Relatively, IG has much more dynamic flexibility than EG. 

Both can be used by instances of BG to determine rejection. EG, IG, and 

BG support the basic model of authorization inference. Furthermore, 

permissions also have priority and inheritance. Permissions that are defined 

in requested objects have high priority, as do banning permissions. The 

authorization mechanism checks whether a requesting user is banned 

according to the User Manager and the permissions of requested objects. 

The priority of banning permissions obviously should be higher than 

granting permissions. In the case that referenced objects have no defined 

permissions, it then checks the class to which they belong. If the class still 

does not define permissions, the permissions inherited from super-classes 

are applied. The authorization inference calculator computes if a requesting 

user is banned or granted access, which involves fundamental permissions 

with respect to the requested object. 

IG provides the ability to dynamically calculate via inferences. Here, 

we give an example to illustrate authorization inference. Table 1 gives the 

objects defining authorization for a bookstore. Individual users are Bob, Jim, 

Julia, Peter and Sam. There are relations of authority classes, objects and a 

relevant relation has Users. The authorities relation of object O is 

O.authorities+@=@ReadPermission[ValidAdults] 

O.authorities+@=@WritePermission[Manager] 

Table 1. Objects of the authorization example 

Meta-Class Object Name .hasUsers (with inverse “inGroup”) 

ExplicitGroup AllMembers @User[Bob;Jim;Julia;Sam] 

ExplicitGroup OverdueMembers @User[Bob;Peter] 

ExplicitGroup Manager @User[Jim] 

   

Meta-Class Object Name #implicitQuery 

ImplicitGroup AdultMember @ExplicitGroup[AllMembers].hasUsers{#age>18} 

   

Meta-Class Object Name .bannedGroups 

BannedGroup Overdue @ExplicitGroup[OverdueMembers] 

   

Meta-Class Object Name .forGroups 

ReadPermission ValidAdults @ImplicitGroup[AdultMember] ; 

@BannedGroup[Overdue] 

WritePermission Manager @ ExplicitGroup[Manager] 

 

By those definitions, authorization inference calculates the permission 

of O. Jim, Julia, and Sam, who are all over age 18, can be granted read 

mailto:O.authorities+@=@WritePermission[Manager
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permission. The calculator bans the users in set Overdue Members due to 

Banned Group [Overdue]. Thus, Bob is filtered out even though he matches 

the rule of Implicit Group [Adult Member]. Then, only Jim has write 

permission. 

Figure 6. Whole view of Kernel-1 

5.3 Access Control 

Much recent research on access control in shared ontologies has 

resulted in proposals for policies and use of ontology resources, representing 

the access control mechanism for special purposes or domains. UCUP
12 

is 

based on its user-centric user profiles where everything is asserted via 

user-defined policies and a Privacy Enhanced (PaPE) mechanism. It uses the 

Semantic Web Rule Language (SWRL
13

) to define rules in Horn clauses, 

but defining such rules might be a bit complex. 

In the paper
14

, the attributes of resources are used as the basis of 

authorization for access control on the grid. All services in the grid must 

enforce those policies on users. However, in our paper, instead of giving a 

copious ontology for most uses, only the most essential definitions for 

authorization are given in Kernel1. With our query language, users not only 

can query among ontologies but can also easily define implicit permission 

rules. Users do not need rich programming backgrounds. Knowledge base 

administrators can also define the permission rules of those objects owned 
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by themselves as administrators. Kernel1 has only the essential definitions 

extended from Kernel0, and Kernel1 can be further customized by 

extensions by authorized developers. The authorization inference follows 

the subclasses of Permission and its relations to calculate the permissions 

according to the requester and the requested resources. Thus, each ontology 

can have its own authority mechanism by extending Kernel1. 

6. CONCLUSIONS 

For sharing ontologies on the Semantic Web, we propose a framework 

with the capabilities of authorization inference, distributed queries, and 

cross-referencing. Our upper ontology, Kernel0 provides the essential 

definitions of a meta-ontology such that everyone can create his or her own 

ontology model or knowledge by easily extending it. Kernel0 is the main 

key to enabling cross-referencing of objects on the Web. The intuitive 

formal query can access classes and objects across the whole Web. Phased 

queries composed of sub-queries make use of the proposed framework to 

query objects in other ontologies via a proxy query. Moreover, implicit 

relations have the ability to relate objects much more flexibly, so that the 

objects of the range can be dynamically calculated instead of being 

explicitly enumerated. This feature also enables authorization inference in 

Kernel1. Kernel1, appended with authority metadata, is a variation of 

RBAC that achieves authorization inference via implicit relations. 

Permission of requesting users on requested objects is computed according 

to fundamental permissions and three basic user-controlling classes, 

including ExplicitGroup, ImplicitGroup and BannedGroup. Such implicit 

relations and authority inference give a flexible way of defining policies. 
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