
International Journal of Electronic Commerce Studies

Vol.4, No.2, pp.281-294, 2013

doi: 10.7903/ijecs.1039

ACCESS CONTROL FOR SHARED
ONTOLOGIES

Daniel J. Buehrer

National Chung Cheng University
168 University Rd., Min-Hsiung Township, Chiayi County, Taiwan

dan@cs.ccu.edu.tw

Tzu-Yang Wang
National Chung Cheng University

168 University Rd., Min-Hsiung Township, Chiayi County, Taiwan
wty@cs.ccu.edu.tw

ABSTRACT

Entities and their relationships for various fields of specialization can

be described by ontologies. For example, the classes, relationships, and

methods for designing a virus may be put into a Protégé ontology. If that

design is to be integrated with a missile design, it will require a standard

way of sharing and cross-referencing both classes and objects of the

ontologies. This should be done in a secure way which only allows access to

specified researchers using specified classes, relations, methods, and

documentation. In this paper, we introduce a framework for ontology

sharing that enables ontologies to easily be deployed on the web. Kernel0 is

the ontology of classes, relations, attributes, and objects. It describes its own

typing constraints and meta-data in the same way as data. Objects can have

relationships to objects of other ontologies. Kernel-1 authorization

definitions in our framework are able to dynamically determine the

permissions of each user or group for queried objects. Our authorization has

the ability to perform inferences via IS-A inheritance and by evaluating

implicit relations and operator definitions. All modifications of values in the

knowledge base are checked for both appropriate authorization and

satisfaction of all typing constraints.

Keywords: Semantic Web, Ontology Sharing, Authorization Inference

mailto:dan@cs.ccu.edu.tw
mailto:wty@cs.ccu.edu.tw

International Journal of Electronic Commerce Studies 282

1. INTRODUCTION

The Semantic Web usually uses triples to represent entities and ideas.

These triples represent relationships among classes (e.g. “subclass”

relationships), the user-defined attributes and relationships of both data and

metadata, and the “extent” relationship from a class to its objects. The

inheritance of data-type constraints into subclasses and sub-relations is built

into Kernel0 of the ontology.

Researchers in computer science have proposed some knowledge

representations (KR) such as RDF, RDF Schema, and OWL
1, 2

. Before these,

there were data models such as the entity-relationship model (E-R Model),

which diagrams the relationships between entities. In recent years,

ontologies
3
, have been used to describe the organization of KR data, which

are usually composed of individuals, concepts, and roles (also known as

objects, classes, and relations). An implementation of an ontology is a data

model of basic metadata of KR. More and more extended knowledge bases

can cooperate as long as a proper basic ontology such as Kernel0 is defined

and shared among them.

The Semantic Web
4
, developed by Sir Timothy Berners-Lee,

introduced the concept that knowledge could be more efficiently used if

machines were applied to a web of data that used a consistent set of resource

pointers. With ontologies related to many domains and knowledge bases,

inter-referencing of information can form a Semantic Web where both man

and machines can reference and apply knowledge from each other. This

paper proposes a framework to organize the sharing web of ontologies for

the Semantic Web. We adopt a flexible three-tier architecture that is an

extension of a client /server architecture.

In our three-tier architecture, clients can be applications, web GUIs, or

mobile applications that communicate with a middle API. The middle layer,

the essential part of the server, is responsible for user login, query parsing,

proxy queries, distributed queries, merging results, and authorization

computations. Current ontology sharing often does not perform

authorization checks; as indicated above, however, the knowledge in an

ontology is often the heart of an organization’s assets. Data as well as data

typing must be hidden.

A hidden backend maintains consistency of the data model. It is also in

charge of translating data model queries into operations on persistent

storage. Depending on the configuration, it stores data in various databases,

in a file system, or even in cloud storage such as Hadoop. The upper

ontology Kernel0 is based on a common data model, class algebra
5, 6

, and it

allows objects to cross-reference each other via relations on the Web. A

Daniel J. Buehrer and Tzu-Yang Wang

283

related query language
6
 helps to query data in the ontology on the web via

proxy queries. Furthermore, the data model contains implicit relations for

which the objects in the range are dynamically calculated. This feature

provides inference ability for authorization relationships. The implicit

descriptions only specify the semantics of permissions instead of

enumerating them. Permissions of requesters on requested objects are

dynamically computed according to Kernel1.

Section 2 outlines the communication among client users, an

authentication center (AC), and an ontology server as well as the

communication between servers to cross-query the ontologies. The protocol

for login to the middle server is described in Section 3 as well as the role of

the middle server in authorizing inferences. Queries between servers must

be constrained using proxies to secure authentication and authorization of

users. The hidden backend’s responsibilities are described in Section 4, and

the authorization inference mechanism is described in Section 5.

2. KNOWLEDGE SHARING ARCHITECTURE

There is already much metadata on the Web about information

exchange. Since the beginnings of the Semantic Web, XML’s universal

resource indicators have been used to act like one-way pointers. Instead, we

use Web-based 2-way relationships between objects and classes. An

ontology of classes and relations is a very useful way for machines and

humans to read structured data. However, for convenience, ontology sharing

is now usually public rather than secure. There is, however, the need for

authorization in some situations. This paper presents a way of sharing

ontologies with authorization control and distributed queries. Our

architecture of ontology sharing is presented in Figure 1. The authentication

center (AC) is a service that is trusted by all servers, providing verification

of users and server identities. Typically, ontology servers are fully public, in

which case all ontology information can be queried by anyone. In this paper,

however, we consider the case where servers and their ontologies are

protected by given policies.

International Journal of Electronic Commerce Studies 284

Figure 1. Three-tier architecture

Figure 1 presents the communication for ontology sharing. Objects,

classes, and relations in an ontology can be distributed on the Web. This

architecture allows the domain and the range of a relation to go across the

Web, that is, between two different ontologies. For security reasons, we use

a proxy design based on stateful verification, supported by an authentication

center. During a query, there may be some objects to be referenced from

different ontologies. In this case, the objects in the domain of a relation can

be located at a different ontology from the range. When a query needing a

proxy is sent from user C, a designated server M first invokes a proxy login

to the server (denoted by P) which will be queried. Then, P asks the AC

whether the key K from M is verified for proxy purposes. P grants M access

as C's agent for a proxy connection if the check is passed. Again, P is a

server just like M, so it can set itself as a fully public server. Then the proxy

check is not necessary. Every server actually has two login services: one for

users and another for proxies. If a proxy login is not allowed, then ontology

sharing cannot be used. After login of a user or a proxy, queries still involve

controlled authorization. The authorization inference is described in Section

5. Furthermore, there is a hidden backend for every server. It takes

responsibility for model translation and data storage. Section 4 describes the

backend work in detail.

Daniel J. Buehrer and Tzu-Yang Wang

285

3. THE MIDDLE LAYER

Relative to the simple data persistency provided by the hidden backend,

the main part of a Cadabia server is the middle layer, which is in charge of

interactions with clients. It handles client logins, queries, and proxy queries

to other servers as well as proxy logins from other servers. Objects in other

ontologies that are cross-referenced by a relation of a query are accessed

during proxy querying. The information of distributed objects is processed

by the middle layer, which collects those objects into the result of the proxy

query. Authorization, in addition, is applied to control the access rights of

client users. The middle layer therefore maintains its own Kernel1 security

ontology to protect itself and its ability to edit access rights and capabilities

of users and their groups.

3.1 Middle Model

The User API and Proxy API define client login and proxy login,

respectively. For a server to be a proxy login, the server must login as a

client to another server. The access of clients applying for the proxy API is

highly restricted for security reasons. Other than the definition of inverse

relationships, modifications to data are expected to be made by users who

directly login to a server, not via a proxy server. That is, clients who use the

User API to login are granted more permission for update operations. A

third way of logging in to the top layer in Figure 2 is to apply a Web service.

A Web service login can be set up by using HTTPS connections to the AC.

Many technologies, like AJAX, JFS, GWT, can achieve this implementation.

However, a Web service which supports stateful verification by te AC is

recommended if browser-only apps use OpenID
7
, for example. All of these

APIs provide querying of ontologies extended from Kernel0, as described in

Section 5.

Figure 2. Components of the middle layer

International Journal of Electronic Commerce Studies 286

The Kernel1 layer definitions involve authentication and service

lookup by AC. The query parser and distribution and merge (D&M)

components process queries from clients. The former deals with a query

request by a client, parsing it into multiple stages. Each stage traverses a

relation and possibly performs selections. Proxy queries are invoked if

objects are distributed on other ontologies, and a merge process collects

objects in the result. Whether local objects or distributed objects are used,

authorization is applied while accessing data on a designated server or proxy

server. Authorization above the data connector layer computes access to

objects from definitions in the ontology. The data connector process

connects to the hidden backend for real data of the ontology. This design not

only protects the backend from outside hacks but also allows the backend

data to be virtually distributed in a cloud.

3.2 Authorization

Our model takes advantage of the ontology to perform authorization

inferences in order to determine the access rights of clients. This

authorization component reads the relevant data described in Kernel1 (see

Section 5)and calculates the permission of objects which the client intends

to access. The result is dynamically calculated from groups
8
, which can be

set either explicitly or implicitly. Explicit set assignments enumerate the

permissions, while implicit sets contain implicit rules for dynamically

computing user authorizations based on the current user and the object

properties. Details of authorization inference are described in Section 5.

4. THE HIDDEN BACKEND

On the server side, the backend plays the part of a bridge to translate

the data model of an ontology into persistent storage. Both SQL and

non-SQL backends have an identical API for the middle layer, so it does not

have to be concerned with what kind of persistent storage is actually used.

This enables persistent storage heterogeneity, and Kernel0-based ontologies

behave like a federated database system
9
. Data of the ontology may be

stored in a database or other persistent storage such as a file system. Having

the backend hidden from outside servers protects it from attacks, so the data

would be hard destroy from the outside. We suggest using a private

connection between the middle and backend for advanced protection.

4.1 Data Model API and Translation

To enable cross-referencing of objects among ontologies on the Web, a

data model called Class Algebra
6
 is adopted for the ontology. It uses a

human-readable Object Identifier (Oid) consisting of a service URL, an

ontology name, a class name, and an object name of the form

Daniel J. Buehrer and Tzu-Yang Wang

287

“URL:ontology@Class[object]”. Backend servers have a different API from

the middle API. The data model API is based on the model of Class Algebra

to control data. Classes, attributes, and relations in Class Algebra are all

treated as definition objects, and class definitions contain specified relations

for inheritance. Another component, the query translator, of the data model

API processes the request and performs operations on data with regard to

target persistent storage. With specified target storage, data are

added/deleted/modified in the corresponding storage. Data model operations

can be translated into relevant queries of database schema if a database is

chosen as persistent storage. Proper database connectors (DBC) help to store

data in a related database, while a data process module (DPM) is used to

access files in a file system.

Figure 3. Components of the hidden backend

4.2 Persistent Storage

Due to the private connection between the middle and backend, there is

no risk of session attacks on the backend. There will be many operations

from access requests via the API to maintain consistency of objects and

relationships among them, including inheritance of classes. The components

at the bottom layer of the backend are database management system (DBMS)

and file systems (FS), including network file systems (NFS) and Distributed

File Systems (DFS). DBMS management of data in the database is

connected by the DBC component. It can connect to a SQL DB, an XML

DB, etc. DBC provides a bridge to access a specified DB, and the query

translator uses it to access the data model as well. DPM, moreover, provides

an approach to directly operate on data in an FS/NFS. This is because some

large objects are not suitable for storage in a DB. They can be more

efficiently stored in a file system, for example, by reading partial pieces of a

file. On the other hand, there can be some persistent storage preserving data

in a specified file format such as JSON or XML. The last module, DFS,

International Journal of Electronic Commerce Studies 288

takes charge of distributing data on the Internet. It even can support cloud

storage (Apache Hadoop
10

, for instance). By implementing such a data

distribution module, the backend can execute much more efficiently and

stably by using the distribution and replication.

5. AUTHORIZATION

5.1 Upper Ontology

Kenel0 is built according to the Class Algebra
5,6

 knowledge

representation. Kernel0 is an upper ontology for metadata in which

ClassDefn, AttributeDefn, and RelationDefn are three essential classes. All

classes (also known as concepts) are defined in a ClassDefn, including

"ClassDefn" itself. It describes basic attributes and relations of classes, such

as isAbstract, isFinal, hasAttibutes, subclassOf, etc. Relations and attributes

are defined in the extents of the RelationDefn and AttributeDefn classes.

Figure 4. Kernel0

"Thing" is the unique root class of the ontology. The other class,

"CDBObject", directly inherits from Thing and plays the role of a basic

OBJECT concept for extending an upper ontology such as SUMO. All other

classes have to be successors of CDBObject to be considered well-defined

in terms of the Cadabia Kernel0. Inheritance of constraints is implemented

for subclassOf, and inheritance of objects in extents is implemented for

superclassOf relations. Several other classes are included in Kernel0.

Daniel J. Buehrer and Tzu-Yang Wang

289

AttributeType is used to define types of attributes, so all attribute types are

of type PrimitiveType, which inherits from AttributeType, which defines

common primitive types of attributes. A Collection class is an abstract

representation for collections with properties such as isOrdered, count, and

hasMembers. The Kernel0 upper ontology is outlined in Figure 4. It

describes the most primitive ontology for sharing and extending data

definitions.

5.2 Authorization Inference

The authorization capability is described in Kernel1. It is a variation of

Role-Based Access Control (RBAC
11

) combined withKernel0. There are

classes of Kernel1 related to authority, including User, AbstractGroup,

UserGroup, ImplicitGroup, ExplicitGroup, BannedGroup and Permission
8
,

appended to Kernel0 classes; the CDBObject adds authorities and owner

relations. Figure 5 shows the relations among these classes, and Figure 6

shows the whole view of Kernel1. An ExplicitGroup (EG) and

ImplicitGroup (IG) define individual users either via an explicit relation or

an implicitly computed formula, respectively, while BannedGroup (BG)

defines those who are banned. The relationship between permissions and

applying objects is defined in five kinds of fundamental permissions

inherited from CDBObject. They are CreatePermission, ReadPermission,

UpdatePermission, DeletePermission and ExecutePermission. Instances of

Permission tell which objects apply what permissions defined in EG, IG, or

BG. AbstractGroup is an abstract class representing the GROUP concept.

Such relations of inheritance avoid nesting the references of BG as well.

That is, the banned objects will never include any object of BG. Thus, we do

not allow multiply negatedBG relations.

Figure 5. Authority partition of Kernel-1

International Journal of Electronic Commerce Studies 290

Each instance of EG explicitly defines a group of users, while each

instance of IG defines a group of users implicitly, which is filtered by a

query constraint. Relatively, IG has much more dynamic flexibility than EG.

Both can be used by instances of BG to determine rejection. EG, IG, and

BG support the basic model of authorization inference. Furthermore,

permissions also have priority and inheritance. Permissions that are defined

in requested objects have high priority, as do banning permissions. The

authorization mechanism checks whether a requesting user is banned

according to the User Manager and the permissions of requested objects.

The priority of banning permissions obviously should be higher than

granting permissions. In the case that referenced objects have no defined

permissions, it then checks the class to which they belong. If the class still

does not define permissions, the permissions inherited from super-classes

are applied. The authorization inference calculator computes if a requesting

user is banned or granted access, which involves fundamental permissions

with respect to the requested object.

IG provides the ability to dynamically calculate via inferences. Here,

we give an example to illustrate authorization inference. Table 1 gives the

objects defining authorization for a bookstore. Individual users are Bob, Jim,

Julia, Peter and Sam. There are relations of authority classes, objects and a

relevant relation has Users. The authorities relation of object O is

O.authorities+@=@ReadPermission[ValidAdults]

O.authorities+@=@WritePermission[Manager]

Table 1. Objects of the authorization example

Meta-Class Object Name .hasUsers (with inverse “inGroup”)

ExplicitGroup AllMembers @User[Bob;Jim;Julia;Sam]

ExplicitGroup OverdueMembers @User[Bob;Peter]

ExplicitGroup Manager @User[Jim]

Meta-Class Object Name #implicitQuery

ImplicitGroup AdultMember @ExplicitGroup[AllMembers].hasUsers{#age>18}

Meta-Class Object Name .bannedGroups

BannedGroup Overdue @ExplicitGroup[OverdueMembers]

Meta-Class Object Name .forGroups

ReadPermission ValidAdults @ImplicitGroup[AdultMember] ;

@BannedGroup[Overdue]

WritePermission Manager @ ExplicitGroup[Manager]

By those definitions, authorization inference calculates the permission

of O. Jim, Julia, and Sam, who are all over age 18, can be granted read

mailto:O.authorities+@=@WritePermission[Manager

Daniel J. Buehrer and Tzu-Yang Wang

291

permission. The calculator bans the users in set Overdue Members due to

Banned Group [Overdue]. Thus, Bob is filtered out even though he matches

the rule of Implicit Group [Adult Member]. Then, only Jim has write

permission.

Figure 6. Whole view of Kernel-1

5.3 Access Control

Much recent research on access control in shared ontologies has

resulted in proposals for policies and use of ontology resources, representing

the access control mechanism for special purposes or domains. UCUP
12

is

based on its user-centric user profiles where everything is asserted via

user-defined policies and a Privacy Enhanced (PaPE) mechanism. It uses the

Semantic Web Rule Language (SWRL
13

) to define rules in Horn clauses,

but defining such rules might be a bit complex.

In the paper
14

, the attributes of resources are used as the basis of

authorization for access control on the grid. All services in the grid must

enforce those policies on users. However, in our paper, instead of giving a

copious ontology for most uses, only the most essential definitions for

authorization are given in Kernel1. With our query language, users not only

can query among ontologies but can also easily define implicit permission

rules. Users do not need rich programming backgrounds. Knowledge base

administrators can also define the permission rules of those objects owned

International Journal of Electronic Commerce Studies 292

by themselves as administrators. Kernel1 has only the essential definitions

extended from Kernel0, and Kernel1 can be further customized by

extensions by authorized developers. The authorization inference follows

the subclasses of Permission and its relations to calculate the permissions

according to the requester and the requested resources. Thus, each ontology

can have its own authority mechanism by extending Kernel1.

6. CONCLUSIONS

For sharing ontologies on the Semantic Web, we propose a framework

with the capabilities of authorization inference, distributed queries, and

cross-referencing. Our upper ontology, Kernel0 provides the essential

definitions of a meta-ontology such that everyone can create his or her own

ontology model or knowledge by easily extending it. Kernel0 is the main

key to enabling cross-referencing of objects on the Web. The intuitive

formal query can access classes and objects across the whole Web. Phased

queries composed of sub-queries make use of the proposed framework to

query objects in other ontologies via a proxy query. Moreover, implicit

relations have the ability to relate objects much more flexibly, so that the

objects of the range can be dynamically calculated instead of being

explicitly enumerated. This feature also enables authorization inference in

Kernel1. Kernel1, appended with authority metadata, is a variation of

RBAC that achieves authorization inference via implicit relations.

Permission of requesting users on requested objects is computed according

to fundamental permissions and three basic user-controlling classes,

including ExplicitGroup, ImplicitGroup and BannedGroup. Such implicit

relations and authority inference give a flexible way of defining policies.

7. REFERENCES

[1] W3C, Resource description framework (RDF) model and syntax

specification. Retrieved on April 14, 2012, from

http://www.w3.org/TR/PR-rdf-syntax.

[2] W3C, Resource description framework (RDF) schemas. Retrieved on

April 14, 2012, from http://www.w3.org/TR/rdf-schema.

[3] T.R. Gruber, Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies,

Academic Press, 43(5-6), p907-928, 1995.

http://dx.doi.org/10.1006/ijhc.1995.1081.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web.

Scientific American, 284(5), p34-43, 2001.

http://dx.doi.org/10.1038%2Fscientificamerican0501-34.

[5] D.J. Buehrer, and L.R. Chien, Knowledge creation using class algebra.

In C. Zong (Ed.), Proceedings of IEEE 2003 International Conference

http://www.w3.org/TR/PR-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://dx.doi.org/10.1006%2Fijhc.1995.1081
http://dx.doi.org/10.1038%2Fscientificamerican0501-34

Daniel J. Buehrer and Tzu-Yang Wang

293

on Natural Language Processing and Knowledge Engineering

(p108-113). Beijing, China: IEEE Press, 2003.

http://dx.doi.org/10.1109/NLPKE.2003.1275877.

[6] D.J. Buehrer, and T.Y. Wang, The cadabia persistent storage service.

In L.J. Hyung (Ed.), Proceedings of New Trends in Information and

Service Science (p197-202). Beijing, China: IEEE Press, 2009.

http://dx.doi.org/10.1109/NISS.2009.134.

[7] D. Recordon, and D. Reed, OpenID 2.0: A platform for user-centric

identity management. In A. Juels, M. Winslett, and A. Goto (Eds.),

Proceedings of the second ACM workshop on Digital identity

management (p11-16). New York, NY, USA: ACM, 2006.

http://dx.doi.org/10.1145/1179529.1179532.

[8] C.M. Liu, The authority mechanism and query parsing for the cadabia

middle layer. A thesis submitted to Institute of Computer Science and

Information Engineering, National Chung Cheng University, Taiwan,

2011.

[9] D. Heimbigner, and D. McLeod, A federated architecture for

information management. ACM Transactions on Information Systems,

ACM New York, 3(3), p253-278, 1985.

http://dx.doi.org/10.1145/4229.4233.

[10] Apache Hadoop, Retrieved on April 3, 2012, from

http://hadoop.apache.org.

[11] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman,

Role-based access control models. Computer, IEEE Press, 29(2),

p38-47, 1996. http://dx.doi.org/10.1109/2.485845.

[12] Z. Iqbal, J. Noll, S. Alam, and M.M.R. Chowdhury, Toward

user-centric privacy-aware user profile ontology for future services. In

J. Del Ser Lorente (Ed.), Proceedings of Third International

Conference on Communication Theory, Reliability, and Quality of

Service (p249-254). Athens, TBD, Greece: IEEE Press, 2010.

http://dx.doi.org/10.1109/CTRQ.2010.49.

[13] Semantic Web Rule Language, Retrieved on April 21, 2012, from

http://www.w3.org/Submission/SWRL/.

[14] I. Blanquer, V. Hern'andez, D. Segrelles, and E. Torres, Enhancing

privacy and authorization control scalability in the grid through

ontologies. IEEE Transactions on Information Technology in

Biomedicine, 13(1), p16-24, 2009.

http://dx.doi.org/10.1109/TITB.2008.2003369.

http://dx.doi.org/10.1109%2FNLPKE.2003.1275877
http://dx.doi.org/10.1109%2FNISS.2009.134
http://dx.doi.org/10.1145%2F1179529.1179532
http://dx.doi.org/10.1145%2F4229.4233
http://hadoop.apache.org/
http://dx.doi.org/10.1109%2F2.485845
http://dx.doi.org/10.1109%2FCTRQ.2010.49
http://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1109%2FTITB.2008.2003369

International Journal of Electronic Commerce Studies 294

